Carbon in United States Forests and Wood Products, 1987-1997: State-by-State Estimates Richard A. Birdsey George M. Lewis USDA Forest Service Global Change Research Program Presented at the 5th State and Local Climate Change Partners' Conference, Annapolis Maryland, November 22, 2002 ### Purpose of Study - Assist states in compiling greenhouse gas inventories for the forest sector - Raise awareness of forest carbon accounting issues - Identify common sources of information and methods - Quantify approximate contribution of forestry sector for each state #### **Project Outputs** - Comprehensive report available (soon) - Web site with data tables by region and state (now) - Limited ability to provide custom analysis or guidance on methodology ### Carbon in United States Forests and Wood Products, 1987-1997: State-by-State Estimates R.A. Birdsey and G.M. Lewis USDA Forest Service Newtown Square, PA rbirdsey@fs.fed.us Table 1-- Total carbon stock on forestland and harvested wood products in the United States, and annual change by accounting component, in Mt¹. | | | | Avg. change | |--------------------------------------|----------|----------|-------------| | | | | per year | | Accounting component | 1987 | 1997 | 1987-97 | | Biomass | 15,833.2 | 16,838.1 | 100.50 | | Forest floor and coarse woody debris | 9,401.3 | 9,455.6 | 5.43 | | Soils | 28,421.6 | 28,663.5 | 24.19 | | Wood products and landfills | 2,919.6 | 3,520.4 | 60.08 | | Total | 56,575.7 | 58,477.6 | 190.19 | ¹Million metric tons. Table 2-- Total carbon stock on forestland and harvested wood products in the United States, and annual change by owner, in Mt. | | | | Avg. change | |-----------------------|----------|----------|-------------| | | | | per year | | Owner group | 1987 | 1997 | 1987-97 | | National forest | 11,703.5 | 12,245.6 | 54.22 | | Other public | 13,482.4 | 13,345.5 | -13.69 | | Forest industry | 5,696.8 | 5,559.1 | -13.77 | | Nonindustrial private | 25,693.1 | 27,327.4 | 163.43 | | Total | 56,575.7 | 58,477.6 | 190.19 | #### Forest sector carbon accounting - Multiple components to track: - Biomass - Soil carbon - Coarse woody debris - Forest floor - Wood products - Landfills - Disturbances: - Land use change - Harvesting - Mortality ### Example: Average forest C budget for one rotation of pine on a high site in the SE ### Example: Two rotations of pine on a high site in SE Forest C and disposition of C in harvested wood NOTE: Energy and emissions are releases of C to the atmosphere ### How Forest Sector Carbon Stocks Change Over Time - Carbon in managed forests has a repeatable pattern - >Including wood products may produce a long-term increase #### Forest type groups of the United States ### Average C Uptake on Land by Region and Age - Regeneration After Harvest (Includes decay of logging debris) ### Basic estimation of carbon stocks and stock changes Carbon stock = CARBON/AREA times AREA - Carbon stock change = C stock at time 2 minus C stock at time 1 Divide by length of period = carbon/year - Estimated values can be obtained from measured data or from using models #### The Forest Inventory # Forest Inventory Estimates as a Basis for Carbon Analysis (Trends by State and Region) - Area by land class (reconciled with NRI) - Area by forest type, owner, age class - Tree volume by species and size class - Tree biomass by species and size class ### Carbon Stock on Forestland and Wood Products of the U.S., 1997 (Total stock estimated to be 57 billion metric tons) ### Change in Carbon Stocks on Forestland and Wood Products of the U.S., 1987-97 ## Rate of Change in Forest Sector Carbon Stocks, 1987-97 ### Rate of Change in Forest Biomass Carbon Stocks, 1987-97 ### Rate of Change in Wood Product Carbon Stocks, 1987-97 # Rate of Change in Total Carbon Stocks from Land-use Change, 1987-97 ### Carbon Sequestration by the Forest Sector of Pennsylvania, 1987-1997 NOTE: land use change contribution = -1 MMTC/yr # Confidence in Carbon Estimates at Regional Scale | Live biomass | Good | |-------------------------|------| | Woody debris and litter | Fair | | Soil organic matter | Poor | | Wood and Ag Products | Fair | - ➤ Research needs: efficient protocols for extensive monitoring; enhanced network of long-term intensive study sites; improved models and analysis - ➤ Implementation need: not all lands are monitored effectively for changes in ecosystem C #### Recommendations for States - Talk with your forestry experts - Use these estimates as a starting point - Identify factors that make a difference in forest carbon stocks - Review data availability - Review and adapt methods - Make estimates and have them reviewed #### What's next? Carbon On-Line Estimator - Custom data retrievals and carbon estimates - User-specified tables, maps, geographic areas - Linkage with up-to-date inventory data - Latest estimation methodology # The Current and Potential Role of Forests in Sequestering Carbon - Currently, U.S. forests sequester carbon at a rate that is 15% of U.S. emissions - It is technically feasible to increase the rate of carbon sequestration in forests by 150 MMTC/yr - Voluntary incentive program are under consideration - Research, monitoring, and landowner assistance would be required for forest carbon sequestration to be enhanced #### Internet Resources: - http://www.fs.fed.us/ne/global/ - U.S. and state-level carbon estimates - Carbon estimation methodology - Global change research information - http://ncasi.uml.edu/COLE/ - Beta-test version of Carbon On-Line Estimator #### For additional information: Richard Birdsey, USDA-FS 610-557-4091 rbirdsey@fs.fed.us Denise Mulholland, US EPA 202-564-3471 mulholland.denise@epa.gov